(elab-mod$c->inst-instoffset idx elab-mod$c) → *
Function:
(defun elab-mod$c->inst-instoffset (idx elab-mod$c) (declare (xargs :stobjs (elab-mod$c))) (declare (xargs :guard (natp idx))) (declare (xargs :guard (and (elab-mod$c-modinsts-ok elab-mod$c) (< idx (elab-mod$c->ninsts elab-mod$c))))) (let ((__function__ 'elab-mod$c->inst-instoffset)) (declare (ignorable __function__)) (stobj-let ((elab-modinst$c (elab-mod$c->modinsttablei idx elab-mod$c))) (res) (mbe :logic (nfix (elab-modinst$c->inst-offset elab-modinst$c)) :exec (elab-modinst$c->inst-offset elab-modinst$c)) res)))
Theorem:
(defthm elab-mod$c->inst-instoffset-in-terms-of-abstraction (implies (< (nfix idx) (nfix (nth *elab-mod$c->ninsts* elab-mod$c))) (equal (elab-mod$c->inst-instoffset idx elab-mod$c) (nfix (nth *elab-modinst$c->inst-offset* (nth idx (elab-mod$c-inst-abstraction elab-mod$c)))))))
Theorem:
(defthm elab-mod$c->inst-instoffset-of-nfix-idx (equal (elab-mod$c->inst-instoffset (nfix idx) elab-mod$c) (elab-mod$c->inst-instoffset idx elab-mod$c)))
Theorem:
(defthm elab-mod$c->inst-instoffset-nat-equiv-congruence-on-idx (implies (nat-equiv idx idx-equiv) (equal (elab-mod$c->inst-instoffset idx elab-mod$c) (elab-mod$c->inst-instoffset idx-equiv elab-mod$c))) :rule-classes :congruence)