(modalist-addr-p x) → *
Function:
(defun modalist-addr-p (x) (declare (xargs :guard (modalist-p x))) (let ((__function__ 'modalist-addr-p)) (declare (ignorable __function__)) (mbe :logic (svarlist-addr-p (modalist-vars x)) :exec (b* ((x (modalist-fix x))) (if (atom x) t (and (module-addr-p (cdar x)) (modalist-addr-p (cdr x))))))))
Theorem:
(defthm modalist-addr-p-of-modalist-fix-x (equal (modalist-addr-p (modalist-fix x)) (modalist-addr-p x)))
Theorem:
(defthm modalist-addr-p-modalist-equiv-congruence-on-x (implies (modalist-equiv x x-equiv) (equal (modalist-addr-p x) (modalist-addr-p x-equiv))) :rule-classes :congruence)