(modalist-all-idxaddr-okp x moddb) → *
Function:
(defun modalist-all-idxaddr-okp (x moddb) (declare (xargs :stobjs (moddb))) (declare (xargs :guard (and (modalist-p x) (moddb-ok moddb)))) (let ((__function__ 'modalist-all-idxaddr-okp)) (declare (ignorable __function__)) (b* ((x (modalist-fix x)) ((when (atom x)) t) ((cons name mod) (car x)) (modidx (moddb-modname-get-index name moddb)) ((unless modidx) (and (svarlist-idxaddr-okp (module-vars mod) 0) (modalist-all-idxaddr-okp (cdr x) moddb))) ((stobj-get totalwires) ((elab-mod (moddb->modsi modidx moddb))) (elab-mod->totalwires elab-mod))) (and (svarlist-idxaddr-okp (module-vars (cdar x)) totalwires) (modalist-all-idxaddr-okp (cdr x) moddb)))))
Theorem:
(defthm modalist-all-idxaddr-okp-of-modalist-fix-x (equal (modalist-all-idxaddr-okp (modalist-fix x) moddb) (modalist-all-idxaddr-okp x moddb)))
Theorem:
(defthm modalist-all-idxaddr-okp-modalist-equiv-congruence-on-x (implies (modalist-equiv x x-equiv) (equal (modalist-all-idxaddr-okp x moddb) (modalist-all-idxaddr-okp x-equiv moddb))) :rule-classes :congruence)
Theorem:
(defthm modalist-all-idxaddr-okp-of-moddb-fix-moddb (equal (modalist-all-idxaddr-okp x (moddb-fix moddb)) (modalist-all-idxaddr-okp x moddb)))
Theorem:
(defthm modalist-all-idxaddr-okp-moddb-equiv-congruence-on-moddb (implies (moddb-equiv moddb moddb-equiv) (equal (modalist-all-idxaddr-okp x moddb) (modalist-all-idxaddr-okp x moddb-equiv))) :rule-classes :congruence)