Function:
(defun moddb-find-bad-modinst-order (n modidx moddb) (declare (xargs :stobjs (moddb))) (declare (xargs :guard (and (natp n) (natp modidx)))) (declare (xargs :guard (and (< modidx (moddb->nmods moddb)) (<= (moddb->nmods moddb) (moddb->mods-length moddb)) (stobj-let ((elab-mod (moddb->modsi modidx moddb))) (ok) (<= n (elab-mod-ninsts elab-mod)) ok)))) (let ((__function__ 'moddb-find-bad-modinst-order)) (declare (ignorable __function__)) (if (zp n) nil (if (moddb-modinst-order-ok (1- n) modidx moddb) (moddb-find-bad-modinst-order (1- n) modidx moddb) (1- n)))))
Theorem:
(defthm return-type-of-moddb-find-bad-modinst-order (b* ((idx (moddb-find-bad-modinst-order n modidx moddb))) (iff (natp idx) idx)) :rule-classes :rewrite)
Theorem:
(defthm moddb-find-bad-modinst-order-of-nfix-n (equal (moddb-find-bad-modinst-order (nfix n) modidx moddb) (moddb-find-bad-modinst-order n modidx moddb)))
Theorem:
(defthm moddb-find-bad-modinst-order-nat-equiv-congruence-on-n (implies (nat-equiv n n-equiv) (equal (moddb-find-bad-modinst-order n modidx moddb) (moddb-find-bad-modinst-order n-equiv modidx moddb))) :rule-classes :congruence)
Theorem:
(defthm moddb-find-bad-modinst-order-of-nfix-modidx (equal (moddb-find-bad-modinst-order n (nfix modidx) moddb) (moddb-find-bad-modinst-order n modidx moddb)))
Theorem:
(defthm moddb-find-bad-modinst-order-nat-equiv-congruence-on-modidx (implies (nat-equiv modidx modidx-equiv) (equal (moddb-find-bad-modinst-order n modidx moddb) (moddb-find-bad-modinst-order n modidx-equiv moddb))) :rule-classes :congruence)
Theorem:
(defthm moddb-find-bad-modinst-order-of-moddb-fix-moddb (equal (moddb-find-bad-modinst-order n modidx (moddb-fix moddb)) (moddb-find-bad-modinst-order n modidx moddb)))
Theorem:
(defthm moddb-find-bad-modinst-order-moddb-equiv-congruence-on-moddb (implies (moddb-equiv moddb moddb-equiv) (equal (moddb-find-bad-modinst-order n modidx moddb) (moddb-find-bad-modinst-order n modidx moddb-equiv))) :rule-classes :congruence)
Theorem:
(defthm moddb-find-bad-modinst-order-bound-weak (<= (moddb-find-bad-modinst-order n modidx moddb) (nfix n)) :rule-classes :linear)
Theorem:
(defthm moddb-find-bad-modinst-order-bound (implies (moddb-find-bad-modinst-order n modidx moddb) (< (moddb-find-bad-modinst-order n modidx moddb) (nfix n))) :rule-classes :linear)
Theorem:
(defthm moddb-find-bad-modinst-order-is-bad (implies (moddb-find-bad-modinst-order n modidx moddb) (not (moddb-modinst-order-ok (moddb-find-bad-modinst-order n modidx moddb) modidx moddb))))
Theorem:
(defthm moddb-find-bad-modinst-order-finds-bad (implies (and (not (moddb-modinst-order-ok idx modidx moddb)) (< (nfix idx) (nfix n))) (and (moddb-find-bad-modinst-order n modidx moddb) (not (moddb-modinst-order-ok (moddb-find-bad-modinst-order n modidx moddb) modidx moddb)))))