(nat-bool-a4env-p x) → *
Function:
(defun nat-bool-a4env-p (x) (declare (xargs :guard (svex-a4vec-env-p x))) (let ((__function__ 'nat-bool-a4env-p)) (declare (ignorable __function__)) (if (atom x) t (and (if (mbt (consp (car x))) (nat-bool-a4vec-p (cdar x)) t) (nat-bool-a4env-p (cdr x))))))
Theorem:
(defthm acl2::__deffixtype-svex-a4vec-env-equiv-means-equal-of-svex-a4vec-env-fix (implies (svex-a4vec-env-equiv x y) (equal (svex-a4vec-env-fix x) (svex-a4vec-env-fix y))) :rule-classes nil)
Theorem:
(defthm nat-bool-a4env-p-of-svex-a4vec-env-fix-x (equal (nat-bool-a4env-p (svex-a4vec-env-fix x)) (nat-bool-a4env-p x)))
Theorem:
(defthm nat-bool-a4env-p-svex-a4vec-env-equiv-congruence-on-x (implies (svex-a4vec-env-equiv x x-equiv) (equal (nat-bool-a4env-p x) (nat-bool-a4env-p x-equiv))) :rule-classes :congruence)