(nat-bool-a4env-vars x) → *
Function:
(defun nat-bool-a4env-vars (x) (declare (xargs :guard (nat-bool-a4env-p! x))) (let ((__function__ 'nat-bool-a4env-vars)) (declare (ignorable __function__)) (if (atom x) nil (append (and (mbt (consp (car x))) (nat-bool-a4vec-vars (cdar x))) (nat-bool-a4env-vars (cdr x))))))
Theorem:
(defthm nat-bool-a4env-vars-of-svex-a4vec-env-fix-x (equal (nat-bool-a4env-vars (svex-a4vec-env-fix x)) (nat-bool-a4env-vars x)))
Theorem:
(defthm nat-bool-a4env-vars-svex-a4vec-env-equiv-congruence-on-x (implies (svex-a4vec-env-equiv x x-equiv) (equal (nat-bool-a4env-vars x) (nat-bool-a4env-vars x-equiv))) :rule-classes :congruence)