(nat-bool-a4vec-p x) → *
Function:
(defun nat-bool-a4vec-p (x) (declare (xargs :guard (a4vec-p x))) (let ((__function__ 'nat-bool-a4vec-p)) (declare (ignorable __function__)) (b* (((a4vec x) x)) (and (nat-bool-listp x.upper) (nat-bool-listp x.lower)))))
Theorem:
(defthm acl2::__deffixtype-a4vec-equiv-means-equal-of-a4vec-fix (implies (a4vec-equiv x y) (equal (a4vec-fix x) (a4vec-fix y))) :rule-classes nil)
Theorem:
(defthm nat-bool-a4vec-p-of-a4vec-fix-x (equal (nat-bool-a4vec-p (a4vec-fix x)) (nat-bool-a4vec-p x)))
Theorem:
(defthm nat-bool-a4vec-p-a4vec-equiv-congruence-on-x (implies (a4vec-equiv x x-equiv) (equal (nat-bool-a4vec-p x) (nat-bool-a4vec-p x-equiv))) :rule-classes :congruence)