(nat-bool-listp x) → *
Function:
(defun nat-bool-listp (x) (declare (xargs :guard t)) (let ((__function__ 'nat-bool-listp)) (declare (ignorable __function__)) (if (atom x) (eq x nil) (and (or (natp (car x)) (booleanp (car x))) (nat-bool-listp (cdr x))))))
Theorem:
(defthm nat-bool-listp-of-aig-sterm (implies (or (booleanp x) (natp x)) (nat-bool-listp (aig-sterm x))))
Theorem:
(defthm nat-bool-listp-of-aig-scons (implies (and (or (booleanp x) (natp x)) (nat-bool-listp y)) (nat-bool-listp (aig-scons x y))))
Theorem:
(defthm nat-bool-listp-of-list-fix (implies (nat-bool-listp x) (nat-bool-listp (list-fix x))))