(svex-alist-addr-p x) → *
Function:
(defun svex-alist-addr-p (x) (declare (xargs :guard (svex-alist-p x))) (let ((__function__ 'svex-alist-addr-p)) (declare (ignorable __function__)) (mbe :logic (and (svarlist-addr-p (svex-alist-vars x)) (svarlist-addr-p (svex-alist-keys x))) :exec (b* ((x (svex-alist-fix x)) ((when (atom x)) t)) (and (svar-addr-p (caar x)) (svex-addr-p (cdar x)) (svex-alist-addr-p (cdr x)))))))
Theorem:
(defthm svex-alist-addr-p-of-svex-alist-fix-x (equal (svex-alist-addr-p (svex-alist-fix x)) (svex-alist-addr-p x)))
Theorem:
(defthm svex-alist-addr-p-svex-alist-equiv-congruence-on-x (implies (svex-alist-equiv x x-equiv) (equal (svex-alist-addr-p x) (svex-alist-addr-p x-equiv))) :rule-classes :congruence)