(svex-alist-compose-rw x conf) → xx
Function:
(defun svex-alist-compose-rw (x conf) (declare (xargs :guard (and (svex-alist-p x) (svex-substconfig-p conf)))) (let ((__function__ 'svex-alist-compose-rw)) (declare (ignorable __function__)) (if (atom x) nil (if (mbt (and (consp (car x)) (svar-p (caar x)))) (cons (cons (caar x) (svex-compose-rw (cdar x) conf)) (svex-alist-compose-rw (cdr x) conf)) (svex-alist-compose-rw (cdr x) conf)))))
Theorem:
(defthm svex-alist-p-of-svex-alist-compose-rw (b* ((xx (svex-alist-compose-rw x conf))) (svex-alist-p xx)) :rule-classes :rewrite)
Theorem:
(defthm svex-alist-compose-rw-correct (b* ((?xx (svex-alist-compose-rw x conf))) (equal (svex-alist-eval xx env) (svex-alist-eval (svex-alist-compose x (svex-substconfig->alist conf)) env))))
Theorem:
(defthm svex-alist-keys-of-svex-alist-compose-rw (b* ((?xx (svex-alist-compose-rw x conf))) (equal (svex-alist-keys xx) (svex-alist-keys x))))
Theorem:
(defthm svex-alist-compose-rw-of-svex-alist-fix-x (equal (svex-alist-compose-rw (svex-alist-fix x) conf) (svex-alist-compose-rw x conf)))
Theorem:
(defthm svex-alist-compose-rw-svex-alist-equiv-congruence-on-x (implies (svex-alist-equiv x x-equiv) (equal (svex-alist-compose-rw x conf) (svex-alist-compose-rw x-equiv conf))) :rule-classes :congruence)
Theorem:
(defthm svex-alist-compose-rw-of-svex-substconfig-fix-conf (equal (svex-alist-compose-rw x (svex-substconfig-fix conf)) (svex-alist-compose-rw x conf)))
Theorem:
(defthm svex-alist-compose-rw-svex-substconfig-equiv-congruence-on-conf (implies (svex-substconfig-equiv conf conf-equiv) (equal (svex-alist-compose-rw x conf) (svex-alist-compose-rw x conf-equiv))) :rule-classes :congruence)