This is a universal equivalence, introduced using def-universal-equiv.
Function:
(defun svex-alist-eval-equiv! (x y) (declare (xargs :non-executable t)) (declare (xargs :guard t)) (declare (xargs :non-executable t)) (prog2$ (acl2::throw-nonexec-error 'svex-alist-eval-equiv! (list x y)) (let ((var (svex-alist-eval-equiv!-witness x y))) (and (svex-eval-equiv (svex-lookup var x) (svex-lookup var y)) (equal (svex-alist-keys x) (svex-alist-keys y))))))
Theorem:
(defthm svex-alist-eval-equiv!-necc (implies (not (and (svex-eval-equiv (svex-lookup var x) (svex-lookup var y)) (equal (svex-alist-keys x) (svex-alist-keys y)))) (not (svex-alist-eval-equiv! x y))))
Theorem:
(defthm svex-alist-eval-equiv!-witnessing-witness-rule-correct (implies (not ((lambda (var y x) (not (if (svex-eval-equiv (svex-lookup var x) (svex-lookup var y)) (equal (svex-alist-keys x) (svex-alist-keys y)) 'nil))) (svex-alist-eval-equiv!-witness x y) y x)) (svex-alist-eval-equiv! x y)) :rule-classes nil)
Theorem:
(defthm svex-alist-eval-equiv!-instancing-instance-rule-correct (implies (not (if (svex-eval-equiv (svex-lookup var x) (svex-lookup var y)) (equal (svex-alist-keys x) (svex-alist-keys y)) 'nil)) (not (svex-alist-eval-equiv! x y))) :rule-classes nil)
Theorem:
(defthm svex-alist-eval-equiv!-is-an-equivalence (and (booleanp (svex-alist-eval-equiv! x y)) (svex-alist-eval-equiv! x x) (implies (svex-alist-eval-equiv! x y) (svex-alist-eval-equiv! y x)) (implies (and (svex-alist-eval-equiv! x y) (svex-alist-eval-equiv! y z)) (svex-alist-eval-equiv! x z))) :rule-classes (:equivalence))