(svex-is-const-concat x) → is-concat
Function:
(defun svex-is-const-concat (x) (declare (xargs :guard (svex-p x))) (let ((__function__ 'svex-is-const-concat)) (declare (ignorable __function__)) (svex-case x :call (and (eq x.fn 'concat) (eql (len x.args) 3) (let ((arg1 (mbe :logic (nth 0 x.args) :exec (car x.args)))) (svex-case arg1 :quote))) :otherwise nil)))
Theorem:
(defthm svex-is-const-concat-of-svex-fix-x (equal (svex-is-const-concat (svex-fix x)) (svex-is-const-concat x)))
Theorem:
(defthm svex-is-const-concat-svex-equiv-congruence-on-x (implies (svex-equiv x x-equiv) (equal (svex-is-const-concat x) (svex-is-const-concat x-equiv))) :rule-classes :congruence)