Function:
(defun svex-named->indexed-memo-ok$inline (x modidx moddb) (declare (xargs :stobjs (moddb))) (declare (xargs :guard (and (svex-p x) (natp modidx) (moddb-ok moddb)))) (declare (xargs :guard (and (svarlist-addr-p (svex-vars x)) (< modidx (moddb->nmods moddb))))) (let ((__function__ 'svex-named->indexed-memo-ok)) (declare (ignorable __function__)) (eq (svex-kind x) :call)))
Theorem:
(defthm svex-named->indexed-memo-ok$inline-of-svex-fix-x (equal (svex-named->indexed-memo-ok$inline (svex-fix x) modidx moddb) (svex-named->indexed-memo-ok$inline x modidx moddb)))
Theorem:
(defthm svex-named->indexed-memo-ok$inline-svex-equiv-congruence-on-x (implies (svex-equiv x x-equiv) (equal (svex-named->indexed-memo-ok$inline x modidx moddb) (svex-named->indexed-memo-ok$inline x-equiv modidx moddb))) :rule-classes :congruence)
Theorem:
(defthm svex-named->indexed-memo-ok$inline-of-nfix-modidx (equal (svex-named->indexed-memo-ok$inline x (nfix modidx) moddb) (svex-named->indexed-memo-ok$inline x modidx moddb)))
Theorem:
(defthm svex-named->indexed-memo-ok$inline-nat-equiv-congruence-on-modidx (implies (nat-equiv modidx modidx-equiv) (equal (svex-named->indexed-memo-ok$inline x modidx moddb) (svex-named->indexed-memo-ok$inline x modidx-equiv moddb))) :rule-classes :congruence)
Theorem:
(defthm svex-named->indexed-memo-ok$inline-of-moddb-fix-moddb (equal (svex-named->indexed-memo-ok$inline x modidx (moddb-fix moddb)) (svex-named->indexed-memo-ok$inline x modidx moddb)))
Theorem:
(defthm svex-named->indexed-memo-ok$inline-moddb-equiv-congruence-on-moddb (implies (moddb-equiv moddb moddb-equiv) (equal (svex-named->indexed-memo-ok$inline x modidx moddb) (svex-named->indexed-memo-ok$inline x modidx moddb-equiv))) :rule-classes :congruence)