(svexlist-toposort-p x) → *
Function:
(defun svexlist-toposort-p (x) (declare (xargs :guard (svexlist-p x))) (let ((__function__ 'svexlist-toposort-p)) (declare (ignorable __function__)) (b* (((when (atom x)) t) (rest (mbe :logic (svexlist-fix (cdr x)) :exec (cdr x))) (first (car x))) (and (or (not (eq (svex-kind first) :call)) (subsetp-equal (svex-call->args first) rest)) (svexlist-toposort-p rest)))))
Theorem:
(defthm svexlist-toposort-p-of-svexlist-fix-x (equal (svexlist-toposort-p (svexlist-fix x)) (svexlist-toposort-p x)))
Theorem:
(defthm svexlist-toposort-p-svexlist-equiv-congruence-on-x (implies (svexlist-equiv x x-equiv) (equal (svexlist-toposort-p x) (svexlist-toposort-p x-equiv))) :rule-classes :congruence)