Basic equivalence relation for svstmtlist structures.
Function:
(defun svstmtlist-equiv$inline (x y) (declare (xargs :guard (and (svstmtlist-p x) (svstmtlist-p y)))) (equal (svstmtlist-fix x) (svstmtlist-fix y)))
Theorem:
(defthm svstmtlist-equiv-is-an-equivalence (and (booleanp (svstmtlist-equiv x y)) (svstmtlist-equiv x x) (implies (svstmtlist-equiv x y) (svstmtlist-equiv y x)) (implies (and (svstmtlist-equiv x y) (svstmtlist-equiv y z)) (svstmtlist-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm svstmtlist-equiv-implies-equal-svstmtlist-fix-1 (implies (svstmtlist-equiv x x-equiv) (equal (svstmtlist-fix x) (svstmtlist-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svstmtlist-fix-under-svstmtlist-equiv (svstmtlist-equiv (svstmtlist-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-svstmtlist-fix-1-forward-to-svstmtlist-equiv (implies (equal (svstmtlist-fix x) y) (svstmtlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-svstmtlist-fix-2-forward-to-svstmtlist-equiv (implies (equal x (svstmtlist-fix y)) (svstmtlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svstmtlist-equiv-of-svstmtlist-fix-1-forward (implies (svstmtlist-equiv (svstmtlist-fix x) y) (svstmtlist-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svstmtlist-equiv-of-svstmtlist-fix-2-forward (implies (svstmtlist-equiv x (svstmtlist-fix y)) (svstmtlist-equiv x y)) :rule-classes :forward-chaining)