(update-elab-mod$a->totalinsts n elab-mod$a) → elab-mod$a2
Function:
(defun update-elab-mod$a->totalinsts (n elab-mod$a) (declare (xargs :guard (and (natp n) (elab-mod$ap elab-mod$a)))) (let ((__function__ 'update-elab-mod$a->totalinsts)) (declare (ignorable __function__)) (s :totalinsts (nfix n) (elab-mod$a-fix elab-mod$a))))
Theorem:
(defthm elab-mod$ap-of-update-elab-mod$a->totalinsts (b* ((elab-mod$a2 (update-elab-mod$a->totalinsts n elab-mod$a))) (elab-mod$ap elab-mod$a2)) :rule-classes :rewrite)
Theorem:
(defthm update-elab-mod$a->totalinsts-of-nfix-n (equal (update-elab-mod$a->totalinsts (nfix n) elab-mod$a) (update-elab-mod$a->totalinsts n elab-mod$a)))
Theorem:
(defthm update-elab-mod$a->totalinsts-nat-equiv-congruence-on-n (implies (nat-equiv n n-equiv) (equal (update-elab-mod$a->totalinsts n elab-mod$a) (update-elab-mod$a->totalinsts n-equiv elab-mod$a))) :rule-classes :congruence)
Theorem:
(defthm update-elab-mod$a->totalinsts-of-elab-mod$a-fix-elab-mod$a (equal (update-elab-mod$a->totalinsts n (elab-mod$a-fix elab-mod$a)) (update-elab-mod$a->totalinsts n elab-mod$a)))
Theorem:
(defthm update-elab-mod$a->totalinsts-elab-mod$a-equiv-congruence-on-elab-mod$a (implies (elab-mod$a-equiv elab-mod$a elab-mod$a-equiv) (equal (update-elab-mod$a->totalinsts n elab-mod$a) (update-elab-mod$a->totalinsts n elab-mod$a-equiv))) :rule-classes :congruence)