(vl-design-drop-user-submodules x drop) → new-x
Function:
(defun vl-design-drop-user-submodules (x drop) (declare (xargs :guard (and (vl-design-p x) (string-listp drop)))) (let ((__function__ 'vl-design-drop-user-submodules)) (declare (ignorable __function__)) (b* (((vl-design x) x) (new-mods (vl-modulelist-drop-user-submodules x.mods drop))) (change-vl-design x :mods new-mods))))
Theorem:
(defthm vl-design-p-of-vl-design-drop-user-submodules (b* ((new-x (vl-design-drop-user-submodules x drop))) (vl-design-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-design-drop-user-submodules-of-vl-design-fix-x (equal (vl-design-drop-user-submodules (vl-design-fix x) drop) (vl-design-drop-user-submodules x drop)))
Theorem:
(defthm vl-design-drop-user-submodules-vl-design-equiv-congruence-on-x (implies (vl-design-equiv x x-equiv) (equal (vl-design-drop-user-submodules x drop) (vl-design-drop-user-submodules x-equiv drop))) :rule-classes :congruence)
Theorem:
(defthm vl-design-drop-user-submodules-of-string-list-fix-drop (equal (vl-design-drop-user-submodules x (string-list-fix drop)) (vl-design-drop-user-submodules x drop)))
Theorem:
(defthm vl-design-drop-user-submodules-string-list-equiv-congruence-on-drop (implies (str::string-list-equiv drop drop-equiv) (equal (vl-design-drop-user-submodules x drop) (vl-design-drop-user-submodules x drop-equiv))) :rule-classes :congruence)