(vl-modulelist-drop-user-submodules x drop) → new-x
Function:
(defun vl-modulelist-drop-user-submodules (x drop) (declare (xargs :guard (and (vl-modulelist-p x) (string-listp drop)))) (let ((__function__ 'vl-modulelist-drop-user-submodules)) (declare (ignorable __function__)) (b* ((drop (string-list-fix drop)) (x (vl-delete-modules drop x)) (fal (make-lookup-alist drop)) (x-prime (vl-modulelist-drop-user-submodules-aux x drop fal))) (fast-alist-free fal) x-prime)))
Theorem:
(defthm vl-modulelist-p-of-vl-modulelist-drop-user-submodules (b* ((new-x (vl-modulelist-drop-user-submodules x drop))) (vl-modulelist-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-modulelist-drop-user-submodules-of-vl-modulelist-fix-x (equal (vl-modulelist-drop-user-submodules (vl-modulelist-fix x) drop) (vl-modulelist-drop-user-submodules x drop)))
Theorem:
(defthm vl-modulelist-drop-user-submodules-vl-modulelist-equiv-congruence-on-x (implies (vl-modulelist-equiv x x-equiv) (equal (vl-modulelist-drop-user-submodules x drop) (vl-modulelist-drop-user-submodules x-equiv drop))) :rule-classes :congruence)
Theorem:
(defthm vl-modulelist-drop-user-submodules-of-string-list-fix-drop (equal (vl-modulelist-drop-user-submodules x (string-list-fix drop)) (vl-modulelist-drop-user-submodules x drop)))
Theorem:
(defthm vl-modulelist-drop-user-submodules-string-list-equiv-congruence-on-drop (implies (str::string-list-equiv drop drop-equiv) (equal (vl-modulelist-drop-user-submodules x drop) (vl-modulelist-drop-user-submodules x drop-equiv))) :rule-classes :congruence)