(svex-repeat-aux n width x acc) → concat
Function:
(defun svex-repeat-aux (n width x acc) (declare (xargs :guard (and (natp n) (natp width) (sv::svex-p x) (sv::svex-p acc)))) (let ((__function__ 'svex-repeat-aux)) (declare (ignorable __function__)) (if (zp n) (sv::svex-fix acc) (svex-repeat-aux (1- n) width x (sv::svex-concat (lnfix width) x acc)))))
Theorem:
(defthm svex-p-of-svex-repeat-aux (b* ((concat (svex-repeat-aux n width x acc))) (sv::svex-p concat)) :rule-classes :rewrite)
Theorem:
(defthm vars-of-svex-repeat-aux (b* ((?concat (svex-repeat-aux n width x acc))) (implies (and (not (member v (sv::svex-vars x))) (not (member v (sv::svex-vars acc)))) (not (member v (sv::svex-vars concat))))))
Theorem:
(defthm svex-repeat-aux-of-nfix-n (equal (svex-repeat-aux (nfix n) width x acc) (svex-repeat-aux n width x acc)))
Theorem:
(defthm svex-repeat-aux-nat-equiv-congruence-on-n (implies (acl2::nat-equiv n n-equiv) (equal (svex-repeat-aux n width x acc) (svex-repeat-aux n-equiv width x acc))) :rule-classes :congruence)
Theorem:
(defthm svex-repeat-aux-of-nfix-width (equal (svex-repeat-aux n (nfix width) x acc) (svex-repeat-aux n width x acc)))
Theorem:
(defthm svex-repeat-aux-nat-equiv-congruence-on-width (implies (acl2::nat-equiv width width-equiv) (equal (svex-repeat-aux n width x acc) (svex-repeat-aux n width-equiv x acc))) :rule-classes :congruence)
Theorem:
(defthm svex-repeat-aux-of-svex-fix-x (equal (svex-repeat-aux n width (sv::svex-fix x) acc) (svex-repeat-aux n width x acc)))
Theorem:
(defthm svex-repeat-aux-svex-equiv-congruence-on-x (implies (sv::svex-equiv x x-equiv) (equal (svex-repeat-aux n width x acc) (svex-repeat-aux n width x-equiv acc))) :rule-classes :congruence)
Theorem:
(defthm svex-repeat-aux-of-svex-fix-acc (equal (svex-repeat-aux n width x (sv::svex-fix acc)) (svex-repeat-aux n width x acc)))
Theorem:
(defthm svex-repeat-aux-svex-equiv-congruence-on-acc (implies (sv::svex-equiv acc acc-equiv) (equal (svex-repeat-aux n width x acc) (svex-repeat-aux n width x acc-equiv))) :rule-classes :congruence)