(vl-call-namedargs->subexprs x) → subexprs
Function:
(defun vl-call-namedargs->subexprs (x) (declare (xargs :guard (vl-call-namedargs-p x))) (let ((__function__ 'vl-call-namedargs->subexprs)) (declare (ignorable __function__)) (b* ((x (vl-call-namedargs-fix x))) (if (atom x) nil (if (cdar x) (cons (vl-expr-fix (cdar x)) (vl-call-namedargs->subexprs (cdr x))) (vl-call-namedargs->subexprs (cdr x)))))))
Theorem:
(defthm vl-exprlist-p-of-vl-call-namedargs->subexprs (b* ((subexprs (vl-call-namedargs->subexprs x))) (vl-exprlist-p subexprs)) :rule-classes :rewrite)
Theorem:
(defthm vl-exprlist-count-of-vl-call-namedargs->subexprs (b* ((?subexprs (vl-call-namedargs->subexprs x))) (<= (vl-exprlist-count subexprs) (vl-call-namedargs-count x))) :rule-classes :linear)
Theorem:
(defthm vl-call-namedargs->subexprs-of-vl-call-namedargs-fix-x (equal (vl-call-namedargs->subexprs (vl-call-namedargs-fix x)) (vl-call-namedargs->subexprs x)))
Theorem:
(defthm vl-call-namedargs->subexprs-vl-call-namedargs-equiv-congruence-on-x (implies (vl-call-namedargs-equiv x x-equiv) (equal (vl-call-namedargs->subexprs x) (vl-call-namedargs->subexprs x-equiv))) :rule-classes :congruence)