(vl-expr-has-ops ops x) → *
Function:
(defun vl-expr-has-ops (ops x) (declare (xargs :guard (and (vl-oplist-p ops) (vl-expr-p x)))) (let ((__function__ 'vl-expr-has-ops)) (declare (ignorable __function__)) (mbe :logic (intersectp-equal (vl-oplist-fix ops) (vl-expr-ops x)) :exec (vl-expr-has-ops-aux (list-fix ops) x))))
Theorem:
(defthm vl-expr-has-ops-of-vl-oplist-fix-ops (equal (vl-expr-has-ops (vl-oplist-fix ops) x) (vl-expr-has-ops ops x)))
Theorem:
(defthm vl-expr-has-ops-vl-oplist-equiv-congruence-on-ops (implies (vl-oplist-equiv ops ops-equiv) (equal (vl-expr-has-ops ops x) (vl-expr-has-ops ops-equiv x))) :rule-classes :congruence)
Theorem:
(defthm vl-expr-has-ops-of-vl-expr-fix-x (equal (vl-expr-has-ops ops (vl-expr-fix x)) (vl-expr-has-ops ops x)))
Theorem:
(defthm vl-expr-has-ops-vl-expr-equiv-congruence-on-x (implies (vl-expr-equiv x x-equiv) (equal (vl-expr-has-ops ops x) (vl-expr-has-ops ops x-equiv))) :rule-classes :congruence)