Determines if every index throughout a vl-hidexpr-p is resolved.
(vl-hidexpr-resolved-p x) → bool
Function:
(defun vl-hidexpr-resolved-p (x) (declare (xargs :guard (vl-hidexpr-p x))) (let ((__function__ 'vl-hidexpr-resolved-p)) (declare (ignorable __function__)) (vl-hidexpr-case x :end t :dot (and (vl-hidindex-resolved-p x.first) (vl-hidexpr-resolved-p x.rest)))))
Theorem:
(defthm vl-hidexpr-resolved-p-when-endp (implies (vl-hidexpr-case x :end) (vl-hidexpr-resolved-p x)))
Theorem:
(defthm vl-hidexpr-resolved-p-of-vl-hidexpr-dot (equal (vl-hidexpr-resolved-p (make-vl-hidexpr-dot :first first :rest rest)) (and (vl-hidindex-resolved-p first) (vl-hidexpr-resolved-p rest))))
Theorem:
(defthm vl-hidexpr-resolved-p-implies-dot (implies (and (vl-hidexpr-resolved-p x) (vl-hidexpr-case x :dot)) (and (vl-hidindex-resolved-p (vl-hidexpr-dot->first x)) (vl-hidexpr-resolved-p (vl-hidexpr-dot->rest x)))))
Theorem:
(defthm vl-hidexpr-resolved-p-of-vl-hidexpr-fix-x (equal (vl-hidexpr-resolved-p (vl-hidexpr-fix x)) (vl-hidexpr-resolved-p x)))
Theorem:
(defthm vl-hidexpr-resolved-p-vl-hidexpr-equiv-congruence-on-x (implies (vl-hidexpr-equiv x x-equiv) (equal (vl-hidexpr-resolved-p x) (vl-hidexpr-resolved-p x-equiv))) :rule-classes :congruence)