(vl-hidexpr->subexprs x) → subexprs
Function:
(defun vl-hidexpr->subexprs (x) (declare (xargs :guard (vl-hidexpr-p x))) (let ((__function__ 'vl-hidexpr->subexprs)) (declare (ignorable __function__)) (vl-hidexpr-case x :end nil :dot (append-without-guard (vl-hidindex->indices x.first) (vl-hidexpr->subexprs x.rest)))))
Theorem:
(defthm vl-exprlist-p-of-vl-hidexpr->subexprs (b* ((subexprs (vl-hidexpr->subexprs x))) (vl-exprlist-p subexprs)) :rule-classes :rewrite)
Theorem:
(defthm vl-hidexpr->subexprs-true-listp (b* nil (true-listp (vl-hidexpr->subexprs x))) :rule-classes :type-prescription)
Theorem:
(defthm vl-exprlist-count-of-vl-hidexpr->subexprs (b* ((?subexprs (vl-hidexpr->subexprs x))) (<= (vl-exprlist-count subexprs) (vl-hidexpr-count x))) :rule-classes :linear)
Theorem:
(defthm vl-hidexpr->subexprs-of-vl-hidexpr-fix-x (equal (vl-hidexpr->subexprs (vl-hidexpr-fix x)) (vl-hidexpr->subexprs x)))
Theorem:
(defthm vl-hidexpr->subexprs-vl-hidexpr-equiv-congruence-on-x (implies (vl-hidexpr-equiv x x-equiv) (equal (vl-hidexpr->subexprs x) (vl-hidexpr->subexprs x-equiv))) :rule-classes :congruence)