(vl-maybe-rhsexprlist-lucidcheck x ss st ctx) → new-st
Function:
(defun vl-maybe-rhsexprlist-lucidcheck (x ss st ctx) (declare (xargs :guard (and (vl-maybe-exprlist-p x) (vl-scopestack-p ss) (vl-lucidstate-p st) (vl-lucidctx-p ctx)))) (let ((__function__ 'vl-maybe-rhsexprlist-lucidcheck)) (declare (ignorable __function__)) (b* (((when (atom x)) (vl-lucidstate-fix st)) (st (vl-maybe-rhsexpr-lucidcheck (car x) ss st ctx))) (vl-maybe-rhsexprlist-lucidcheck (cdr x) ss st ctx))))
Theorem:
(defthm vl-lucidstate-p-of-vl-maybe-rhsexprlist-lucidcheck (b* ((new-st (vl-maybe-rhsexprlist-lucidcheck x ss st ctx))) (vl-lucidstate-p new-st)) :rule-classes :rewrite)
Theorem:
(defthm vl-maybe-rhsexprlist-lucidcheck-of-vl-maybe-exprlist-fix-x (equal (vl-maybe-rhsexprlist-lucidcheck (vl-maybe-exprlist-fix x) ss st ctx) (vl-maybe-rhsexprlist-lucidcheck x ss st ctx)))
Theorem:
(defthm vl-maybe-rhsexprlist-lucidcheck-vl-maybe-exprlist-equiv-congruence-on-x (implies (vl-maybe-exprlist-equiv x x-equiv) (equal (vl-maybe-rhsexprlist-lucidcheck x ss st ctx) (vl-maybe-rhsexprlist-lucidcheck x-equiv ss st ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-maybe-rhsexprlist-lucidcheck-of-vl-scopestack-fix-ss (equal (vl-maybe-rhsexprlist-lucidcheck x (vl-scopestack-fix ss) st ctx) (vl-maybe-rhsexprlist-lucidcheck x ss st ctx)))
Theorem:
(defthm vl-maybe-rhsexprlist-lucidcheck-vl-scopestack-equiv-congruence-on-ss (implies (vl-scopestack-equiv ss ss-equiv) (equal (vl-maybe-rhsexprlist-lucidcheck x ss st ctx) (vl-maybe-rhsexprlist-lucidcheck x ss-equiv st ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-maybe-rhsexprlist-lucidcheck-of-vl-lucidstate-fix-st (equal (vl-maybe-rhsexprlist-lucidcheck x ss (vl-lucidstate-fix st) ctx) (vl-maybe-rhsexprlist-lucidcheck x ss st ctx)))
Theorem:
(defthm vl-maybe-rhsexprlist-lucidcheck-vl-lucidstate-equiv-congruence-on-st (implies (vl-lucidstate-equiv st st-equiv) (equal (vl-maybe-rhsexprlist-lucidcheck x ss st ctx) (vl-maybe-rhsexprlist-lucidcheck x ss st-equiv ctx))) :rule-classes :congruence)
Theorem:
(defthm vl-maybe-rhsexprlist-lucidcheck-of-vl-lucidctx-fix-ctx (equal (vl-maybe-rhsexprlist-lucidcheck x ss st (vl-lucidctx-fix ctx)) (vl-maybe-rhsexprlist-lucidcheck x ss st ctx)))
Theorem:
(defthm vl-maybe-rhsexprlist-lucidcheck-vl-lucidctx-equiv-congruence-on-ctx (implies (vl-lucidctx-equiv ctx ctx-equiv) (equal (vl-maybe-rhsexprlist-lucidcheck x ss st ctx) (vl-maybe-rhsexprlist-lucidcheck x ss st ctx-equiv))) :rule-classes :congruence)