(vl-module-bindelim-insttable x itbl) → itbl
Function:
(defun vl-module-bindelim-insttable (x itbl) (declare (xargs :guard (and (vl-module-p x) (vl-bindelim-insttable-p itbl)))) (let ((__function__ 'vl-module-bindelim-insttable)) (declare (ignorable __function__)) (b* ((x (vl-module-fix x))) (vl-genblob-bindelim-insttable (vl-module->genblob x) x nil itbl))))
Theorem:
(defthm vl-bindelim-insttable-p-of-vl-module-bindelim-insttable (b* ((itbl (vl-module-bindelim-insttable x itbl))) (vl-bindelim-insttable-p itbl)) :rule-classes :rewrite)
Theorem:
(defthm vl-module-bindelim-insttable-of-vl-module-fix-x (equal (vl-module-bindelim-insttable (vl-module-fix x) itbl) (vl-module-bindelim-insttable x itbl)))
Theorem:
(defthm vl-module-bindelim-insttable-vl-module-equiv-congruence-on-x (implies (vl-module-equiv x x-equiv) (equal (vl-module-bindelim-insttable x itbl) (vl-module-bindelim-insttable x-equiv itbl))) :rule-classes :congruence)
Theorem:
(defthm vl-module-bindelim-insttable-of-vl-bindelim-insttable-fix-itbl (equal (vl-module-bindelim-insttable x (vl-bindelim-insttable-fix itbl)) (vl-module-bindelim-insttable x itbl)))
Theorem:
(defthm vl-module-bindelim-insttable-vl-bindelim-insttable-equiv-congruence-on-itbl (implies (vl-bindelim-insttable-equiv itbl itbl-equiv) (equal (vl-module-bindelim-insttable x itbl) (vl-module-bindelim-insttable x itbl-equiv))) :rule-classes :congruence)