(vl-modulelist-apply-binddelta x delta) maps vl-module-apply-binddelta across a list.
(vl-modulelist-apply-binddelta x delta) → new-x
This is an ordinary defprojection.
Function:
(defun vl-modulelist-apply-binddelta-exec (x delta acc) (declare (xargs :guard (and (vl-modulelist-p x) (vl-binddelta-p delta)))) (declare (xargs :guard t)) (let ((__function__ 'vl-modulelist-apply-binddelta-exec)) (declare (ignorable __function__)) (if (consp x) (vl-modulelist-apply-binddelta-exec (cdr x) delta (cons (vl-module-apply-binddelta (car x) delta) acc)) acc)))
Function:
(defun vl-modulelist-apply-binddelta-nrev (x delta nrev) (declare (xargs :stobjs (nrev))) (declare (xargs :guard (and (vl-modulelist-p x) (vl-binddelta-p delta)))) (declare (xargs :guard t)) (let ((__function__ 'vl-modulelist-apply-binddelta-nrev)) (declare (ignorable __function__)) (if (atom x) (nrev-fix nrev) (let ((nrev (nrev-push (vl-module-apply-binddelta (car x) delta) nrev))) (vl-modulelist-apply-binddelta-nrev (cdr x) delta nrev)))))
Function:
(defun vl-modulelist-apply-binddelta (x delta) (declare (xargs :guard (and (vl-modulelist-p x) (vl-binddelta-p delta)))) (declare (xargs :guard t)) (let ((__function__ 'vl-modulelist-apply-binddelta)) (declare (ignorable __function__)) (mbe :logic (if (consp x) (cons (vl-module-apply-binddelta (car x) delta) (vl-modulelist-apply-binddelta (cdr x) delta)) nil) :exec (if (atom x) nil (with-local-nrev (vl-modulelist-apply-binddelta-nrev x delta nrev))))))
Theorem:
(defthm vl-modulelist-p-of-vl-modulelist-apply-binddelta (b* ((new-x (vl-modulelist-apply-binddelta x delta))) (vl-modulelist-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-modulelist-apply-binddelta-of-vl-modulelist-fix-x (equal (vl-modulelist-apply-binddelta (vl-modulelist-fix x) delta) (vl-modulelist-apply-binddelta x delta)))
Theorem:
(defthm vl-modulelist-apply-binddelta-vl-modulelist-equiv-congruence-on-x (implies (vl-modulelist-equiv x x-equiv) (equal (vl-modulelist-apply-binddelta x delta) (vl-modulelist-apply-binddelta x-equiv delta))) :rule-classes :congruence)
Theorem:
(defthm vl-modulelist-apply-binddelta-of-vl-binddelta-fix-delta (equal (vl-modulelist-apply-binddelta x (vl-binddelta-fix delta)) (vl-modulelist-apply-binddelta x delta)))
Theorem:
(defthm vl-modulelist-apply-binddelta-vl-binddelta-equiv-congruence-on-delta (implies (vl-binddelta-equiv delta delta-equiv) (equal (vl-modulelist-apply-binddelta x delta) (vl-modulelist-apply-binddelta x delta-equiv))) :rule-classes :congruence)
Theorem:
(defthm vl-modulelist-apply-binddelta-of-update-nth (implies (<= (nfix acl2::n) (len acl2::x)) (equal (vl-modulelist-apply-binddelta (update-nth acl2::n acl2::v acl2::x) delta) (update-nth acl2::n (vl-module-apply-binddelta acl2::v delta) (vl-modulelist-apply-binddelta acl2::x delta)))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-apply-binddelta-of-revappend (equal (vl-modulelist-apply-binddelta (revappend acl2::x acl2::y) delta) (revappend (vl-modulelist-apply-binddelta acl2::x delta) (vl-modulelist-apply-binddelta acl2::y delta))) :rule-classes ((:rewrite)))
Theorem:
(defthm nthcdr-of-vl-modulelist-apply-binddelta (equal (nthcdr acl2::n (vl-modulelist-apply-binddelta acl2::x delta)) (vl-modulelist-apply-binddelta (nthcdr acl2::n acl2::x) delta)) :rule-classes ((:rewrite)))
Theorem:
(defthm nth-of-vl-modulelist-apply-binddelta (equal (nth acl2::n (vl-modulelist-apply-binddelta acl2::x delta)) (and (< (nfix acl2::n) (len acl2::x)) (vl-module-apply-binddelta (nth acl2::n acl2::x) delta))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-apply-binddelta-of-take (implies (<= (nfix acl2::n) (len acl2::x)) (equal (vl-modulelist-apply-binddelta (take acl2::n acl2::x) delta) (take acl2::n (vl-modulelist-apply-binddelta acl2::x delta)))) :rule-classes ((:rewrite)))
Theorem:
(defthm set-equiv-congruence-over-vl-modulelist-apply-binddelta (implies (set-equiv acl2::x acl2::y) (set-equiv (vl-modulelist-apply-binddelta acl2::x delta) (vl-modulelist-apply-binddelta acl2::y delta))) :rule-classes ((:congruence)))
Theorem:
(defthm subsetp-of-vl-modulelist-apply-binddelta-when-subsetp (implies (subsetp acl2::x acl2::y) (subsetp (vl-modulelist-apply-binddelta acl2::x delta) (vl-modulelist-apply-binddelta acl2::y delta))) :rule-classes ((:rewrite)))
Theorem:
(defthm member-of-vl-module-apply-binddelta-in-vl-modulelist-apply-binddelta (implies (member acl2::k acl2::x) (member (vl-module-apply-binddelta acl2::k delta) (vl-modulelist-apply-binddelta acl2::x delta))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-apply-binddelta-nrev-removal (equal (vl-modulelist-apply-binddelta-nrev acl2::x delta nrev) (append nrev (vl-modulelist-apply-binddelta acl2::x delta))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-apply-binddelta-exec-removal (equal (vl-modulelist-apply-binddelta-exec acl2::x delta acl2::acc) (revappend (vl-modulelist-apply-binddelta acl2::x delta) acl2::acc)) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-apply-binddelta-of-rev (equal (vl-modulelist-apply-binddelta (rev acl2::x) delta) (rev (vl-modulelist-apply-binddelta acl2::x delta))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-apply-binddelta-of-list-fix (equal (vl-modulelist-apply-binddelta (list-fix acl2::x) delta) (vl-modulelist-apply-binddelta acl2::x delta)) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-apply-binddelta-of-append (equal (vl-modulelist-apply-binddelta (append acl2::a acl2::b) delta) (append (vl-modulelist-apply-binddelta acl2::a delta) (vl-modulelist-apply-binddelta acl2::b delta))) :rule-classes ((:rewrite)))
Theorem:
(defthm cdr-of-vl-modulelist-apply-binddelta (equal (cdr (vl-modulelist-apply-binddelta acl2::x delta)) (vl-modulelist-apply-binddelta (cdr acl2::x) delta)) :rule-classes ((:rewrite)))
Theorem:
(defthm car-of-vl-modulelist-apply-binddelta (equal (car (vl-modulelist-apply-binddelta acl2::x delta)) (and (consp acl2::x) (vl-module-apply-binddelta (car acl2::x) delta))) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-apply-binddelta-under-iff (iff (vl-modulelist-apply-binddelta acl2::x delta) (consp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm consp-of-vl-modulelist-apply-binddelta (equal (consp (vl-modulelist-apply-binddelta acl2::x delta)) (consp acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm len-of-vl-modulelist-apply-binddelta (equal (len (vl-modulelist-apply-binddelta acl2::x delta)) (len acl2::x)) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-of-vl-modulelist-apply-binddelta (true-listp (vl-modulelist-apply-binddelta acl2::x delta)) :rule-classes :type-prescription)
Theorem:
(defthm vl-modulelist-apply-binddelta-when-not-consp (implies (not (consp acl2::x)) (equal (vl-modulelist-apply-binddelta acl2::x delta) nil)) :rule-classes ((:rewrite)))
Theorem:
(defthm vl-modulelist-apply-binddelta-of-cons (equal (vl-modulelist-apply-binddelta (cons acl2::a acl2::b) delta) (cons (vl-module-apply-binddelta acl2::a delta) (vl-modulelist-apply-binddelta acl2::b delta))) :rule-classes ((:rewrite)))