(vl-modulelist-bindelim x ss itbl delta) → (mv new-x delta)
Function:
(defun vl-modulelist-bindelim (x ss itbl delta) (declare (xargs :guard (and (vl-modulelist-p x) (vl-scopestack-p ss) (vl-bindelim-insttable-p itbl) (vl-binddelta-p delta)))) (let ((__function__ 'vl-modulelist-bindelim)) (declare (ignorable __function__)) (b* (((when (atom x)) (mv nil (vl-binddelta-fix delta))) ((mv x1 delta) (vl-module-bindelim (car x) ss itbl delta)) ((mv xrest delta) (vl-modulelist-bindelim (cdr x) ss itbl delta))) (mv (cons x1 xrest) delta))))
Theorem:
(defthm vl-modulelist-p-of-vl-modulelist-bindelim.new-x (b* (((mv ?new-x ?delta) (vl-modulelist-bindelim x ss itbl delta))) (vl-modulelist-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm vl-binddelta-p-of-vl-modulelist-bindelim.delta (b* (((mv ?new-x ?delta) (vl-modulelist-bindelim x ss itbl delta))) (vl-binddelta-p delta)) :rule-classes :rewrite)
Theorem:
(defthm vl-modulelist-bindelim-of-vl-modulelist-fix-x (equal (vl-modulelist-bindelim (vl-modulelist-fix x) ss itbl delta) (vl-modulelist-bindelim x ss itbl delta)))
Theorem:
(defthm vl-modulelist-bindelim-vl-modulelist-equiv-congruence-on-x (implies (vl-modulelist-equiv x x-equiv) (equal (vl-modulelist-bindelim x ss itbl delta) (vl-modulelist-bindelim x-equiv ss itbl delta))) :rule-classes :congruence)
Theorem:
(defthm vl-modulelist-bindelim-of-vl-scopestack-fix-ss (equal (vl-modulelist-bindelim x (vl-scopestack-fix ss) itbl delta) (vl-modulelist-bindelim x ss itbl delta)))
Theorem:
(defthm vl-modulelist-bindelim-vl-scopestack-equiv-congruence-on-ss (implies (vl-scopestack-equiv ss ss-equiv) (equal (vl-modulelist-bindelim x ss itbl delta) (vl-modulelist-bindelim x ss-equiv itbl delta))) :rule-classes :congruence)
Theorem:
(defthm vl-modulelist-bindelim-of-vl-bindelim-insttable-fix-itbl (equal (vl-modulelist-bindelim x ss (vl-bindelim-insttable-fix itbl) delta) (vl-modulelist-bindelim x ss itbl delta)))
Theorem:
(defthm vl-modulelist-bindelim-vl-bindelim-insttable-equiv-congruence-on-itbl (implies (vl-bindelim-insttable-equiv itbl itbl-equiv) (equal (vl-modulelist-bindelim x ss itbl delta) (vl-modulelist-bindelim x ss itbl-equiv delta))) :rule-classes :congruence)
Theorem:
(defthm vl-modulelist-bindelim-of-vl-binddelta-fix-delta (equal (vl-modulelist-bindelim x ss itbl (vl-binddelta-fix delta)) (vl-modulelist-bindelim x ss itbl delta)))
Theorem:
(defthm vl-modulelist-bindelim-vl-binddelta-equiv-congruence-on-delta (implies (vl-binddelta-equiv delta delta-equiv) (equal (vl-modulelist-bindelim x ss itbl delta) (vl-modulelist-bindelim x ss itbl delta-equiv))) :rule-classes :congruence)