(vl-plusminus->subexprs x) → subexprs
Function:
(defun vl-plusminus->subexprs (x) (declare (xargs :guard (vl-plusminus-p x))) (let ((__function__ 'vl-plusminus->subexprs)) (declare (ignorable __function__)) (b* (((vl-plusminus x))) (list x.base x.width))))
Theorem:
(defthm vl-exprlist-p-of-vl-plusminus->subexprs (b* ((subexprs (vl-plusminus->subexprs x))) (vl-exprlist-p subexprs)) :rule-classes :rewrite)
Theorem:
(defthm vl-exprlist-count-of-vl-plusminus->subexprs (b* ((?subexprs (vl-plusminus->subexprs x))) (<= (vl-exprlist-count subexprs) (vl-plusminus-count x))) :rule-classes :linear)
Theorem:
(defthm vl-plusminus->subexprs-of-vl-plusminus-fix-x (equal (vl-plusminus->subexprs (vl-plusminus-fix x)) (vl-plusminus->subexprs x)))
Theorem:
(defthm vl-plusminus->subexprs-vl-plusminus-equiv-congruence-on-x (implies (vl-plusminus-equiv x x-equiv) (equal (vl-plusminus->subexprs x) (vl-plusminus->subexprs x-equiv))) :rule-classes :congruence)