(vl-pp-bindlist x ss &key (ps 'ps)) → ps
Function:
(defun vl-pp-bindlist-fn (x ss ps) (declare (xargs :stobjs (ps))) (declare (xargs :guard (and (vl-bindlist-p x) (vl-scopestack-p ss)))) (let ((__function__ 'vl-pp-bindlist)) (declare (ignorable __function__)) (if (atom x) ps (vl-ps-seq (vl-pp-bind (car x) ss) (vl-pp-bindlist (cdr x) ss)))))
Theorem:
(defthm vl-pp-bindlist-fn-of-vl-bindlist-fix-x (equal (vl-pp-bindlist-fn (vl-bindlist-fix x) ss ps) (vl-pp-bindlist-fn x ss ps)))
Theorem:
(defthm vl-pp-bindlist-fn-vl-bindlist-equiv-congruence-on-x (implies (vl-bindlist-equiv x x-equiv) (equal (vl-pp-bindlist-fn x ss ps) (vl-pp-bindlist-fn x-equiv ss ps))) :rule-classes :congruence)
Theorem:
(defthm vl-pp-bindlist-fn-of-vl-scopestack-fix-ss (equal (vl-pp-bindlist-fn x (vl-scopestack-fix ss) ps) (vl-pp-bindlist-fn x ss ps)))
Theorem:
(defthm vl-pp-bindlist-fn-vl-scopestack-equiv-congruence-on-ss (implies (vl-scopestack-equiv ss ss-equiv) (equal (vl-pp-bindlist-fn x ss ps) (vl-pp-bindlist-fn x ss-equiv ps))) :rule-classes :congruence)