(vl-scopeexpr->subexprs x) → subexprs
Function:
(defun vl-scopeexpr->subexprs (x) (declare (xargs :guard (vl-scopeexpr-p x))) (let ((__function__ 'vl-scopeexpr->subexprs)) (declare (ignorable __function__)) (vl-scopeexpr-case x :end (vl-hidexpr->subexprs x.hid) :colon (vl-scopeexpr->subexprs x.rest))))
Theorem:
(defthm vl-exprlist-p-of-vl-scopeexpr->subexprs (b* ((subexprs (vl-scopeexpr->subexprs x))) (vl-exprlist-p subexprs)) :rule-classes :rewrite)
Theorem:
(defthm vl-exprlist-count-of-vl-scopeexpr->subexprs (b* ((?subexprs (vl-scopeexpr->subexprs x))) (< (vl-exprlist-count subexprs) (vl-scopeexpr-count x))) :rule-classes :linear)
Theorem:
(defthm vl-scopeexpr->subexprs-of-vl-scopeexpr-fix-x (equal (vl-scopeexpr->subexprs (vl-scopeexpr-fix x)) (vl-scopeexpr->subexprs x)))
Theorem:
(defthm vl-scopeexpr->subexprs-vl-scopeexpr-equiv-congruence-on-x (implies (vl-scopeexpr-equiv x x-equiv) (equal (vl-scopeexpr->subexprs x) (vl-scopeexpr->subexprs x-equiv))) :rule-classes :congruence)