(vl-selstep->svex-name x) → name
Function:
(defun vl-selstep->svex-name (x) (declare (xargs :guard (vl-selstep-p x))) (declare (xargs :guard (vl-selstep-resolved-p x))) (let ((__function__ 'vl-selstep->svex-name)) (declare (ignorable __function__)) (b* ((sel (vl-selstep->select x))) (vl-select-case sel :field sel.name :index (vl-resolved->val sel.val)))))
Theorem:
(defthm name-p-of-vl-selstep->svex-name (b* ((name (vl-selstep->svex-name x))) (sv::name-p name)) :rule-classes :rewrite)
Theorem:
(defthm vl-selstep->svex-name-of-vl-selstep-fix-x (equal (vl-selstep->svex-name (vl-selstep-fix x)) (vl-selstep->svex-name x)))
Theorem:
(defthm vl-selstep->svex-name-vl-selstep-equiv-congruence-on-x (implies (vl-selstep-equiv x x-equiv) (equal (vl-selstep->svex-name x) (vl-selstep->svex-name x-equiv))) :rule-classes :congruence)