(vl-valuerangelist->subexprs x) → subexprs
Function:
(defun vl-valuerangelist->subexprs (x) (declare (xargs :guard (vl-valuerangelist-p x))) (let ((__function__ 'vl-valuerangelist->subexprs)) (declare (ignorable __function__)) (if (atom x) nil (append (vl-valuerange->subexprs (car x)) (vl-valuerangelist->subexprs (cdr x))))))
Theorem:
(defthm vl-exprlist-p-of-vl-valuerangelist->subexprs (b* ((subexprs (vl-valuerangelist->subexprs x))) (vl-exprlist-p subexprs)) :rule-classes :rewrite)
Theorem:
(defthm vl-exprlist-count-of-vl-valuerangelist->subexprs (b* ((?subexprs (vl-valuerangelist->subexprs x))) (<= (vl-exprlist-count subexprs) (vl-valuerangelist-count x))) :rule-classes :linear)
Theorem:
(defthm vl-valuerangelist->subexprs-of-vl-valuerangelist-fix-x (equal (vl-valuerangelist->subexprs (vl-valuerangelist-fix x)) (vl-valuerangelist->subexprs x)))
Theorem:
(defthm vl-valuerangelist->subexprs-vl-valuerangelist-equiv-congruence-on-x (implies (vl-valuerangelist-equiv x x-equiv) (equal (vl-valuerangelist->subexprs x) (vl-valuerangelist->subexprs x-equiv))) :rule-classes :congruence)