Access the |X86ISA|::|BYTE0| field of a evex-prefixes bit structure.
(evex-prefixes->byte0 x) → byte0
Function:
(defun evex-prefixes->byte0$inline (x) (declare (xargs :guard (evex-prefixes-p x))) (mbe :logic (let ((x (evex-prefixes-fix x))) (part-select x :low 0 :width 8)) :exec (the (unsigned-byte 8) (logand (the (unsigned-byte 8) 255) (the (unsigned-byte 32) x)))))
Theorem:
(defthm 8bits-p-of-evex-prefixes->byte0 (b* ((byte0 (evex-prefixes->byte0$inline x))) (8bits-p byte0)) :rule-classes :rewrite)
Theorem:
(defthm evex-prefixes->byte0$inline-of-evex-prefixes-fix-x (equal (evex-prefixes->byte0$inline (evex-prefixes-fix x)) (evex-prefixes->byte0$inline x)))
Theorem:
(defthm evex-prefixes->byte0$inline-evex-prefixes-equiv-congruence-on-x (implies (evex-prefixes-equiv x x-equiv) (equal (evex-prefixes->byte0$inline x) (evex-prefixes->byte0$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm evex-prefixes->byte0-of-evex-prefixes (equal (evex-prefixes->byte0 (evex-prefixes byte0 byte1 byte2 byte3)) (8bits-fix byte0)))
Theorem:
(defthm evex-prefixes->byte0-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x evex-prefixes-equiv-under-mask) (evex-prefixes-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 255) 0)) (equal (evex-prefixes->byte0 x) (evex-prefixes->byte0 y))))