(operand-type-p x) → *
Function:
(defun operand-type-p (x) (declare (xargs :guard t)) (let ((__function__ 'operand-type-p)) (declare (ignorable __function__)) (or (not x) (acl2::keyword-listp x) (and (true-listp x) (if (equal (len x) 1) (or (acl2-numberp (nth 0 x)) (addressing-method-code-p (nth 0 x))) (if (equal (len x) 2) (and (addressing-method-code-p (nth 0 x)) (operand-type-code-p (nth 1 x))) nil))))))
Function:
(defun operand-type-fix (x) (declare (xargs :guard (operand-type-p x))) (let ((__function__ 'operand-type-fix)) (declare (ignorable __function__)) (mbe :logic (if (operand-type-p x) x 'nil) :exec x)))
Function:
(defun operand-type-equiv$inline (x y) (declare (xargs :guard (and (operand-type-p x) (operand-type-p y)))) (equal (operand-type-fix x) (operand-type-fix y)))
Theorem:
(defthm operand-type-equiv-is-an-equivalence (and (booleanp (operand-type-equiv x y)) (operand-type-equiv x x) (implies (operand-type-equiv x y) (operand-type-equiv y x)) (implies (and (operand-type-equiv x y) (operand-type-equiv y z)) (operand-type-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm operand-type-equiv-implies-equal-operand-type-fix-1 (implies (operand-type-equiv x x-equiv) (equal (operand-type-fix x) (operand-type-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm operand-type-fix-under-operand-type-equiv (operand-type-equiv (operand-type-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))