Access the |X86ISA|::|VVVV| field of a vex2-byte1 bit structure.
(vex2-byte1->vvvv x) → vvvv
Function:
(defun vex2-byte1->vvvv$inline (x) (declare (xargs :guard (vex2-byte1-p x))) (mbe :logic (let ((x (vex2-byte1-fix x))) (part-select x :low 3 :width 4)) :exec (the (unsigned-byte 4) (logand (the (unsigned-byte 4) 15) (the (unsigned-byte 5) (ash (the (unsigned-byte 8) x) -3))))))
Theorem:
(defthm 4bits-p-of-vex2-byte1->vvvv (b* ((vvvv (vex2-byte1->vvvv$inline x))) (4bits-p vvvv)) :rule-classes :rewrite)
Theorem:
(defthm vex2-byte1->vvvv$inline-of-vex2-byte1-fix-x (equal (vex2-byte1->vvvv$inline (vex2-byte1-fix x)) (vex2-byte1->vvvv$inline x)))
Theorem:
(defthm vex2-byte1->vvvv$inline-vex2-byte1-equiv-congruence-on-x (implies (vex2-byte1-equiv x x-equiv) (equal (vex2-byte1->vvvv$inline x) (vex2-byte1->vvvv$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm vex2-byte1->vvvv-of-vex2-byte1 (equal (vex2-byte1->vvvv (vex2-byte1 pp l vvvv r)) (4bits-fix vvvv)))
Theorem:
(defthm vex2-byte1->vvvv-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x vex2-byte1-equiv-under-mask) (vex2-byte1-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 120) 0)) (equal (vex2-byte1->vvvv x) (vex2-byte1->vvvv y))))