Update the |X86ISA|::|ZMM_HI256-STATE| field of a xcr0bits bit structure.
(!xcr0bits->zmm_hi256-state zmm_hi256-state x) → new-x
Function:
(defun !xcr0bits->zmm_hi256-state$inline (zmm_hi256-state x) (declare (xargs :guard (and (bitp zmm_hi256-state) (xcr0bits-p x)))) (mbe :logic (b* ((zmm_hi256-state (mbe :logic (bfix zmm_hi256-state) :exec zmm_hi256-state)) (x (xcr0bits-fix x))) (part-install zmm_hi256-state x :width 1 :low 6)) :exec (the (unsigned-byte 64) (logior (the (unsigned-byte 64) (logand (the (unsigned-byte 64) x) (the (signed-byte 8) -65))) (the (unsigned-byte 7) (ash (the (unsigned-byte 1) zmm_hi256-state) 6))))))
Theorem:
(defthm xcr0bits-p-of-!xcr0bits->zmm_hi256-state (b* ((new-x (!xcr0bits->zmm_hi256-state$inline zmm_hi256-state x))) (xcr0bits-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !xcr0bits->zmm_hi256-state$inline-of-bfix-zmm_hi256-state (equal (!xcr0bits->zmm_hi256-state$inline (bfix zmm_hi256-state) x) (!xcr0bits->zmm_hi256-state$inline zmm_hi256-state x)))
Theorem:
(defthm !xcr0bits->zmm_hi256-state$inline-bit-equiv-congruence-on-zmm_hi256-state (implies (bit-equiv zmm_hi256-state zmm_hi256-state-equiv) (equal (!xcr0bits->zmm_hi256-state$inline zmm_hi256-state x) (!xcr0bits->zmm_hi256-state$inline zmm_hi256-state-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !xcr0bits->zmm_hi256-state$inline-of-xcr0bits-fix-x (equal (!xcr0bits->zmm_hi256-state$inline zmm_hi256-state (xcr0bits-fix x)) (!xcr0bits->zmm_hi256-state$inline zmm_hi256-state x)))
Theorem:
(defthm !xcr0bits->zmm_hi256-state$inline-xcr0bits-equiv-congruence-on-x (implies (xcr0bits-equiv x x-equiv) (equal (!xcr0bits->zmm_hi256-state$inline zmm_hi256-state x) (!xcr0bits->zmm_hi256-state$inline zmm_hi256-state x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !xcr0bits->zmm_hi256-state-is-xcr0bits (equal (!xcr0bits->zmm_hi256-state zmm_hi256-state x) (change-xcr0bits x :zmm_hi256-state zmm_hi256-state)))
Theorem:
(defthm xcr0bits->zmm_hi256-state-of-!xcr0bits->zmm_hi256-state (b* ((?new-x (!xcr0bits->zmm_hi256-state$inline zmm_hi256-state x))) (equal (xcr0bits->zmm_hi256-state new-x) (bfix zmm_hi256-state))))
Theorem:
(defthm !xcr0bits->zmm_hi256-state-equiv-under-mask (b* ((?new-x (!xcr0bits->zmm_hi256-state$inline zmm_hi256-state x))) (xcr0bits-equiv-under-mask new-x x -65)))