Recognizer for asgop structures.
(asgopp x) → *
Function:
(defun asgopp (x) (declare (xargs :guard t)) (let ((__function__ 'asgopp)) (declare (ignorable __function__)) (and (consp x) (cond ((or (atom x) (eq (car x) :asg)) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :asg-add) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :asg-sub) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :asg-mul) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :asg-div) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :asg-rem) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :asg-pow) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :asg-shl) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :asg-shr) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :asg-bitand) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :asg-bitior) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :asg-bitxor) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) ((eq (car x) :asg-and) (and (true-listp (cdr x)) (eql (len (cdr x)) 0) (b* nil t))) (t (and (eq (car x) :asg-or) (and (true-listp (cdr x)) (eql (len (cdr x)) 0)) (b* nil t)))))))
Theorem:
(defthm consp-when-asgopp (implies (asgopp x) (consp x)) :rule-classes :compound-recognizer)