Lifting of the circuit to a predicate.
Theorem:
(defthm field-neq-pred-suff (implies (and (pfield::fep w prime) (and (equal (pfield::mul (pfield::add x (pfield::mul (mod -1 prime) y prime) prime) w prime) z) (equal (pfield::mul (pfield::add x (pfield::mul (mod -1 prime) y prime) prime) (pfield::add (mod 1 prime) (pfield::mul (mod -1 prime) z prime) prime) prime) (mod 0 prime)))) (field-neq-pred x y z prime)))
Theorem:
(defthm definition-satp-to-field-neq-pred (implies (and (equal (pfcs::lookup-definition "field_neq" pfcs::defs) '(:definition (pfcs::name . "field_neq") (pfcs::para "x" "y" "z") (pfcs::body (:equal (:mul (:add (:var "x") (:mul (:const -1) (:var "y"))) (:var "w")) (:var "z")) (:equal (:mul (:add (:var "x") (:mul (:const -1) (:var "y"))) (:add (:const 1) (:mul (:const -1) (:var "z")))) (:const 0))))) (pfield::fep x prime) (pfield::fep y prime) (pfield::fep z prime) (primep prime)) (equal (pfcs::definition-satp "field_neq" pfcs::defs (list x y z) prime) (field-neq-pred x y z prime))))