Lifting of the circuit to a predicate.
Function:
(defun field-add-pred (x y z prime) (and (equal (pfield::mul (pfield::add x y prime) (mod 1 prime) prime) z)))
Theorem:
(defthm definition-satp-to-field-add-pred (implies (and (equal (pfcs::lookup-definition "field_add" pfcs::defs) '(:definition (pfcs::name . "field_add") (pfcs::para "x" "y" "z") (pfcs::body (:equal (:mul (:add (:var "x") (:var "y")) (:const 1)) (:var "z"))))) (pfield::fep x prime) (pfield::fep y prime) (pfield::fep z prime) (primep prime)) (equal (pfcs::definition-satp "field_add" pfcs::defs (list x y z) prime) (field-add-pred x y z prime))))