Lifting of the circuit to a predicate.
Function:
(defun boolean-nor-pred (x y z prime) (and (equal (pfield::mul (pfield::add (mod 1 prime) (pfield::mul (mod -1 prime) x prime) prime) (pfield::add (mod 1 prime) (pfield::mul (mod -1 prime) y prime) prime) prime) z)))
Theorem:
(defthm definition-satp-to-boolean-nor-pred (implies (and (equal (pfcs::lookup-definition "boolean_nor" pfcs::defs) '(:definition (pfcs::name . "boolean_nor") (pfcs::para "x" "y" "z") (pfcs::body (:equal (:mul (:add (:const 1) (:mul (:const -1) (:var "x"))) (:add (:const 1) (:mul (:const -1) (:var "y")))) (:var "z"))))) (pfield::fep x prime) (pfield::fep y prime) (pfield::fep z prime) (primep prime)) (equal (pfcs::definition-satp "boolean_nor" pfcs::defs (list x y z) prime) (boolean-nor-pred x y z prime))))