Lifting of the circuit to a predicate.
Function:
(defun field-double-pred (x y prime) (and (equal (pfield::mul (pfield::add x x prime) (mod 1 prime) prime) y)))
Theorem:
(defthm definition-satp-to-field-double-pred (implies (and (equal (pfcs::lookup-definition "field_double" pfcs::defs) '(:definition (pfcs::name . "field_double") (pfcs::para "x" "y") (pfcs::body (:equal (:mul (:add (:var "x") (:var "x")) (:const 1)) (:var "y"))))) (pfield::fep x prime) (pfield::fep y prime) (primep prime)) (equal (pfcs::definition-satp "field_double" pfcs::defs (list x y) prime) (field-double-pred x y prime))))