Lifting of the circuit to a predicate.
Theorem:
(defthm field-neq-pred-suff (implies (and (pfield::fep w prime) (and (equal (pfield::mul (pfield::sub x y prime) w prime) z) (equal (pfield::mul (pfield::sub x y prime) (pfield::sub (mod 1 prime) z prime) prime) (mod 0 prime)))) (field-neq-pred x y z prime)))
Theorem:
(defthm definition-satp-to-field-neq-pred (implies (and (equal (pfcs::lookup-definition "field_neq" pfcs::defs) '(:definition (pfcs::name . "field_neq") (pfcs::para "x" "y" "z") (pfcs::body (:equal (:mul (:sub (:var "x") (:var "y")) (:var "w")) (:var "z")) (:equal (:mul (:sub (:var "x") (:var "y")) (:sub (:const 1) (:var "z"))) (:const 0))))) (pfield::fep x prime) (pfield::fep y prime) (pfield::fep z prime) (primep prime)) (equal (pfcs::definition-satp "field_neq" pfcs::defs (list x y z) prime) (field-neq-pred x y z prime))))