Lifting of the circuit to a predicate.
Theorem:
(defthm boolean-eq-pred-suff (implies (and (pfield::fep w prime) (and (boolean-neq-pred x y w prime) (boolean-not-pred w z prime))) (boolean-eq-pred x y z prime)))
Theorem:
(defthm definition-satp-to-boolean-eq-pred (implies (and (equal (pfcs::lookup-definition "boolean_eq" pfcs::defs) '(:definition (pfcs::name . "boolean_eq") (pfcs::para "x" "y" "z") (pfcs::body (:relation "boolean_neq" ((:var "x") (:var "y") (:var "w"))) (:relation "boolean_not" ((:var "w") (:var "z")))))) (equal (pfcs::lookup-definition "boolean_neq" pfcs::defs) '(:definition (pfcs::name . "boolean_neq") (pfcs::para "x" "y" "z") (pfcs::body (:relation "boolean_xor" ((:var "x") (:var "y") (:var "z")))))) (equal (pfcs::lookup-definition "boolean_xor" pfcs::defs) '(:definition (pfcs::name . "boolean_xor") (pfcs::para "x" "y" "z") (pfcs::body (:equal (:mul (:mul (:const 2) (:var "x")) (:var "y")) (:sub (:add (:var "x") (:var "y")) (:var "z")))))) (equal (pfcs::lookup-definition "boolean_not" pfcs::defs) '(:definition (pfcs::name . "boolean_not") (pfcs::para "x" "y") (pfcs::body (:equal (:mul (:sub (:const 1) (:var "x")) (:const 1)) (:var "y"))))) (pfield::fep x prime) (pfield::fep y prime) (pfield::fep z prime) (primep prime)) (equal (pfcs::definition-satp "boolean_eq" pfcs::defs (list x y z) prime) (boolean-eq-pred x y z prime))))