• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
      • Vwsim
      • Isar
      • Wp-gen
      • Dimacs-reader
      • Pfcs
      • Legacy-defrstobj
      • Proof-checker-array
      • Soft
      • C
      • Farray
      • Rp-rewriter
      • Riscv
      • Instant-runoff-voting
      • Imp-language
      • Sidekick
      • Leftist-trees
      • Java
      • Taspi
      • Bitcoin
      • Des
      • Ethereum
      • X86isa
      • Sha-2
      • Yul
      • Zcash
      • Proof-checker-itp13
      • Regex
      • ACL2-programming-language
      • Json
      • Jfkr
      • Equational
      • Cryptography
      • Poseidon
      • Where-do-i-place-my-book
      • Axe
      • Aleo
        • Aleobft
          • Correctness
          • Definition
            • Initialization
            • Transitions
            • States
            • Events
            • Reachability
              • System-state-reachable-from-p
              • System-state-reachablep
            • Library-extensions
          • Aleovm
          • Leo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Community
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Reachability

    System-state-reachablep

    Check if a system state is reachable from some initial state.

    Definitions and Theorems

    Theorem: system-state-reachablep-suff

    (defthm system-state-reachablep-suff
      (implies (and (system-statep from)
                    (system-initp from)
                    (system-state-reachable-from-p systate from))
               (system-state-reachablep systate)))

    Theorem: booleanp-of-system-state-reachablep

    (defthm booleanp-of-system-state-reachablep
      (b* ((yes/no (system-state-reachablep systate)))
        (booleanp yes/no))
      :rule-classes :rewrite)

    Theorem: system-state-reachablep-of-system-state-fix-systate

    (defthm system-state-reachablep-of-system-state-fix-systate
      (equal (system-state-reachablep (system-state-fix systate))
             (system-state-reachablep systate)))

    Theorem: system-state-reachablep-system-state-equiv-congruence-on-systate

    (defthm
       system-state-reachablep-system-state-equiv-congruence-on-systate
      (implies (system-state-equiv systate systate-equiv)
               (equal (system-state-reachablep systate)
                      (system-state-reachablep systate-equiv)))
      :rule-classes :congruence)