• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
      • Apt
      • Zfc
      • Acre
      • Milawa
      • Smtlink
      • Abnf
        • Deftreeops
        • Defdefparse
        • Defgrammar
        • Tree-utilities
        • Notation
          • Syntax-abstraction
          • Semantics
          • Abstract-syntax
            • Convenience-constructors
            • Num-val
            • Char-val
            • Repeat-range
            • Rulename
            • Rule
            • Rulename-option
            • Num-base
            • Rule-option
            • Prose-val
            • Rulelist
            • Char-val-set
            • Rulename-set
            • Rulename-list
            • Grammar
            • Alt/conc/rep/elem
              • Element
              • Repetition
              • Alternation
                • Alternationp
                  • Alternationp-basics
                  • Alternation-equiv
                  • Alternation-fix
                • Concatenation
            • Core-rules
            • Concrete-syntax
          • Grammar-parser
          • Meta-circular-validation
          • Parsing-primitives-defresult
          • Parsing-primitives-seq
          • Operations
          • Examples
          • Differences-with-paper
          • Constructor-utilities
          • Grammar-printer
          • Parsing-tools
        • Vwsim
        • Isar
        • Pfcs
        • Wp-gen
        • Dimacs-reader
        • Legacy-defrstobj
        • Proof-checker-array
        • Soft
        • C
        • Farray
        • Rp-rewriter
        • Riscv
        • Instant-runoff-voting
        • Imp-language
        • Sidekick
        • Leftist-trees
        • Java
        • Taspi
        • Bitcoin
        • Des
        • Ethereum
        • X86isa
        • Sha-2
        • Yul
        • Zcash
        • Proof-checker-itp13
        • Regex
        • ACL2-programming-language
        • Json
        • Jfkr
        • Equational
        • Cryptography
        • Poseidon
        • Where-do-i-place-my-book
        • Axe
        • Aleo
        • Bigmems
        • Builtins
        • Execloader
        • Solidity
        • Paco
        • Concurrent-programs
        • Bls12-377-curves
      • Debugging
      • Std
      • Community
      • Proof-automation
      • Macro-libraries
      • ACL2
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Alternationp

    Alternationp-basics

    Basic theorems about alternationp, generated by std::deflist.

    Definitions and Theorems

    Theorem: alternationp-of-cons

    (defthm alternationp-of-cons
      (equal (alternationp (cons acl2::a acl2::x))
             (and (concatenationp acl2::a)
                  (alternationp acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-of-cdr-when-alternationp

    (defthm alternationp-of-cdr-when-alternationp
      (implies (alternationp (double-rewrite acl2::x))
               (alternationp (cdr acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-when-not-consp

    (defthm alternationp-when-not-consp
      (implies (not (consp acl2::x))
               (equal (alternationp acl2::x)
                      (not acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: concatenationp-of-car-when-alternationp

    (defthm concatenationp-of-car-when-alternationp
      (implies (alternationp acl2::x)
               (concatenationp (car acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: true-listp-when-alternationp-compound-recognizer

    (defthm true-listp-when-alternationp-compound-recognizer
      (implies (alternationp acl2::x)
               (true-listp acl2::x))
      :rule-classes :compound-recognizer)

    Theorem: alternationp-of-list-fix

    (defthm alternationp-of-list-fix
      (implies (alternationp acl2::x)
               (alternationp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-of-rev

    (defthm alternationp-of-rev
      (equal (alternationp (rev acl2::x))
             (alternationp (list-fix acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-of-append

    (defthm alternationp-of-append
      (equal (alternationp (append acl2::a acl2::b))
             (and (alternationp (list-fix acl2::a))
                  (alternationp acl2::b)))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-of-last

    (defthm alternationp-of-last
      (implies (alternationp (double-rewrite acl2::x))
               (alternationp (last acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: concatenationp-of-nth-when-alternationp

    (defthm concatenationp-of-nth-when-alternationp
      (implies (alternationp acl2::x)
               (concatenationp (nth acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-of-nthcdr

    (defthm alternationp-of-nthcdr
      (implies (alternationp (double-rewrite acl2::x))
               (alternationp (nthcdr acl2::n acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-of-remove

    (defthm alternationp-of-remove
      (implies (alternationp acl2::x)
               (alternationp (remove acl2::a acl2::x)))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-of-repeat

    (defthm alternationp-of-repeat
      (iff (alternationp (repeat acl2::n acl2::x))
           (or (concatenationp acl2::x)
               (zp acl2::n)))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-of-revappend

    (defthm alternationp-of-revappend
      (equal (alternationp (revappend acl2::x acl2::y))
             (and (alternationp (list-fix acl2::x))
                  (alternationp acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-of-rcons

    (defthm alternationp-of-rcons
      (iff (alternationp (rcons acl2::a acl2::x))
           (and (concatenationp acl2::a)
                (alternationp (list-fix acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: concatenationp-when-member-equal-of-alternationp

    (defthm concatenationp-when-member-equal-of-alternationp
      (and (implies (and (member-equal acl2::a acl2::x)
                         (alternationp acl2::x))
                    (concatenationp acl2::a))
           (implies (and (alternationp acl2::x)
                         (member-equal acl2::a acl2::x))
                    (concatenationp acl2::a)))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-when-subsetp-equal

    (defthm alternationp-when-subsetp-equal
      (and (implies (and (subsetp-equal acl2::x acl2::y)
                         (alternationp acl2::y))
                    (equal (alternationp acl2::x)
                           (true-listp acl2::x)))
           (implies (and (alternationp acl2::y)
                         (subsetp-equal acl2::x acl2::y))
                    (equal (alternationp acl2::x)
                           (true-listp acl2::x))))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-of-set-difference-equal

    (defthm alternationp-of-set-difference-equal
      (implies (alternationp acl2::x)
               (alternationp (set-difference-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-of-intersection-equal-1

    (defthm alternationp-of-intersection-equal-1
      (implies (alternationp (double-rewrite acl2::x))
               (alternationp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-of-intersection-equal-2

    (defthm alternationp-of-intersection-equal-2
      (implies (alternationp (double-rewrite acl2::y))
               (alternationp (intersection-equal acl2::x acl2::y)))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-of-union-equal

    (defthm alternationp-of-union-equal
      (equal (alternationp (union-equal acl2::x acl2::y))
             (and (alternationp (list-fix acl2::x))
                  (alternationp (double-rewrite acl2::y))))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-of-take

    (defthm alternationp-of-take
      (implies (alternationp (double-rewrite acl2::x))
               (iff (alternationp (take acl2::n acl2::x))
                    (or (concatenationp nil)
                        (<= (nfix acl2::n) (len acl2::x)))))
      :rule-classes ((:rewrite)))

    Theorem: alternationp-of-update-nth

    (defthm alternationp-of-update-nth
      (implies (alternationp (double-rewrite acl2::x))
               (iff (alternationp (update-nth acl2::n acl2::y acl2::x))
                    (and (concatenationp acl2::y)
                         (or (<= (nfix acl2::n) (len acl2::x))
                             (concatenationp nil)))))
      :rule-classes ((:rewrite)))