• Top
    • Documentation
    • Books
    • Boolean-reasoning
    • Projects
    • Debugging
    • Std
    • Community
    • Proof-automation
    • Macro-libraries
    • ACL2
    • Interfacing-tools
    • Hardware-verification
      • Gl
        • Term-level-reasoning
        • Glmc
        • Other-resources
        • Optimization
        • Reference
          • Def-gl-thm
          • Shape-specs
            • G-call
            • Flex-bindings
            • Auto-bindings
            • G-int
            • Symbolic-objects
            • Gl-aside
            • Def-gl-param-thm
            • Symbolic-arithmetic
            • Bfr
            • Def-gl-boolean-constraint
            • Gl-mbe
            • Bvec
            • Flex-bindings
            • Auto-bindings
            • Gl-interp
            • Gl-set-uninterpreted
            • Def-gl-clause-processor
            • Def-glcp-ctrex-rewrite
            • ACL2::always-equal
            • Gl-hint
            • Def-gl-rewrite
            • Def-gl-branch-merge
            • Gl-force-check
            • Gl-concretize
            • Gl-assert
            • Gl-param-thm
            • Gl-simplify-satlink-mode
            • Gl-satlink-mode
            • Gl-bdd-mode
            • Gl-aig-bddify-mode
            • Gl-fraig-satlink-mode
          • Debugging
          • Basic-tutorial
        • Esim
        • Vl2014
        • Sv
        • Fgl
        • Vwsim
        • Vl
        • X86isa
        • Svl
        • Rtl
      • Software-verification
      • Math
      • Testing-utilities
    • Shape-specs

    G-int

    Create a g-binding for an integer.

    This is a low-level way to create a custom shape specifier for a signed integer. You might generally prefer higher-level tools like auto-bindings.

    Definitions and Theorems

    Function: g-int

    (defun g-int (start by n)
      (declare (xargs :guard (and (acl2-numberp start)
                                  (acl2-numberp by)
                                  (natp n))))
      (g-integer (numlist start by n)))