(lex-cws input) → (mv ret-tree ret-input)
Function:
(defun lex-cws (input) (declare (xargs :guard (nat-listp input))) (let ((__function__ 'lex-cws)) (declare (ignorable __function__)) (b* (((mv tree-ws input-after-ws) (lex-ws input)) ((when (reserrp tree-ws)) (mv tree-ws (nat-list-fix input))) ((mv trees input-after-trees) (lex-repetition-*-comment/ws input-after-ws))) (mv (abnf::make-tree-nonleaf :rulename? (abnf::rulename "cws") :branches (list (list tree-ws) trees)) input-after-trees))))
Theorem:
(defthm tree-resultp-of-lex-cws.ret-tree (b* (((mv ?ret-tree ?ret-input) (lex-cws input))) (abnf::tree-resultp ret-tree)) :rule-classes :rewrite)
Theorem:
(defthm nat-listp-of-lex-cws.ret-input (b* (((mv ?ret-tree ?ret-input) (lex-cws input))) (nat-listp ret-input)) :rule-classes :rewrite)
Theorem:
(defthm len-of-lex-cws (b* (((mv ?ret-tree ?ret-input) (lex-cws input))) (<= (len ret-input) (len input))) :rule-classes :linear)
Theorem:
(defthm lex-cws-of-nat-list-fix-input (equal (lex-cws (nat-list-fix input)) (lex-cws input)))
Theorem:
(defthm lex-cws-nat-list-equiv-congruence-on-input (implies (acl2::nat-list-equiv input input-equiv) (equal (lex-cws input) (lex-cws input-equiv))) :rule-classes :congruence)