Declarative parsing specification.
(parsep ucodes tree) → yes/no
For now we just define this as the grammatical parsing captured by grammar-parsep.
If for each
Function:
(defun parsep (ucodes tree) (declare (xargs :guard (and (leo-early::unicode-listp ucodes) (abnf::treep tree)))) (let ((__function__ 'parsep)) (declare (ignorable __function__)) (grammar-parsep ucodes tree)))
Theorem:
(defthm booleanp-of-parsep (b* ((yes/no (parsep ucodes tree))) (booleanp yes/no)) :rule-classes :rewrite)
Theorem:
(defthm parsep-of-unicode-list-fix-ucodes (equal (parsep (leo-early::unicode-list-fix ucodes) tree) (parsep ucodes tree)))
Theorem:
(defthm parsep-unicode-list-equiv-congruence-on-ucodes (implies (leo-early::unicode-list-equiv ucodes ucodes-equiv) (equal (parsep ucodes tree) (parsep ucodes-equiv tree))) :rule-classes :congruence)
Theorem:
(defthm parsep-of-tree-fix-tree (equal (parsep ucodes (abnf::tree-fix tree)) (parsep ucodes tree)))
Theorem:
(defthm parsep-tree-equiv-congruence-on-tree (implies (abnf::tree-equiv tree tree-equiv) (equal (parsep ucodes tree) (parsep ucodes tree-equiv))) :rule-classes :congruence)