Fixing function for reference structures.
(reference-fix x) → new-x
Function:
(defun reference-fix$inline (x) (declare (xargs :guard (referencep x))) (let ((__function__ 'reference-fix)) (declare (ignorable __function__)) (mbe :logic (case (reference-kind x) (:internal (b* ((get (identifier-fix (std::da-nth 0 (cdr x))))) (cons :internal (list get)))) (:external (b* ((get (locator-fix (std::da-nth 0 (cdr x))))) (cons :external (list get))))) :exec x)))
Theorem:
(defthm referencep-of-reference-fix (b* ((new-x (reference-fix$inline x))) (referencep new-x)) :rule-classes :rewrite)
Theorem:
(defthm reference-fix-when-referencep (implies (referencep x) (equal (reference-fix x) x)))
Function:
(defun reference-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (referencep acl2::x) (referencep acl2::y)))) (equal (reference-fix acl2::x) (reference-fix acl2::y)))
Theorem:
(defthm reference-equiv-is-an-equivalence (and (booleanp (reference-equiv x y)) (reference-equiv x x) (implies (reference-equiv x y) (reference-equiv y x)) (implies (and (reference-equiv x y) (reference-equiv y z)) (reference-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm reference-equiv-implies-equal-reference-fix-1 (implies (reference-equiv acl2::x x-equiv) (equal (reference-fix acl2::x) (reference-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm reference-fix-under-reference-equiv (reference-equiv (reference-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-reference-fix-1-forward-to-reference-equiv (implies (equal (reference-fix acl2::x) acl2::y) (reference-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-reference-fix-2-forward-to-reference-equiv (implies (equal acl2::x (reference-fix acl2::y)) (reference-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm reference-equiv-of-reference-fix-1-forward (implies (reference-equiv (reference-fix acl2::x) acl2::y) (reference-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm reference-equiv-of-reference-fix-2-forward (implies (reference-equiv acl2::x (reference-fix acl2::y)) (reference-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm reference-kind$inline-of-reference-fix-x (equal (reference-kind$inline (reference-fix x)) (reference-kind$inline x)))
Theorem:
(defthm reference-kind$inline-reference-equiv-congruence-on-x (implies (reference-equiv x x-equiv) (equal (reference-kind$inline x) (reference-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-reference-fix (consp (reference-fix x)) :rule-classes :type-prescription)