Basic equivalence relation for finalization structures.
Function:
(defun finalization-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (finalizationp acl2::x) (finalizationp acl2::y)))) (equal (finalization-fix acl2::x) (finalization-fix acl2::y)))
Theorem:
(defthm finalization-equiv-is-an-equivalence (and (booleanp (finalization-equiv x y)) (finalization-equiv x x) (implies (finalization-equiv x y) (finalization-equiv y x)) (implies (and (finalization-equiv x y) (finalization-equiv y z)) (finalization-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm finalization-equiv-implies-equal-finalization-fix-1 (implies (finalization-equiv acl2::x x-equiv) (equal (finalization-fix acl2::x) (finalization-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm finalization-fix-under-finalization-equiv (finalization-equiv (finalization-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-finalization-fix-1-forward-to-finalization-equiv (implies (equal (finalization-fix acl2::x) acl2::y) (finalization-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-finalization-fix-2-forward-to-finalization-equiv (implies (equal acl2::x (finalization-fix acl2::y)) (finalization-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm finalization-equiv-of-finalization-fix-1-forward (implies (finalization-equiv (finalization-fix acl2::x) acl2::y) (finalization-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm finalization-equiv-of-finalization-fix-2-forward (implies (finalization-equiv acl2::x (finalization-fix acl2::y)) (finalization-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)